The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Grazing zooplankton severely impacted by nanoplastic particles

Close-up of a transparent water flea, with detailed antennae and internal structures visible against a dark background, showing its interactions with aquatic organisms.
Grazing zooplankton, daphnia, which are an important source of food for fish, were found to be particularly vulnerable (Photo: Erik Selander/Lund University)

Researchers at Lund University in Sweden have studied how nanoplastic affects aquatic organisms in lakes and rivers. The results are surprising and the researchers are the first to show that some species are being wiped out, while others – such as cyanobacteria that contribute to algal blooms – are completely unaffected.

Every year, the amount of plastic in the world’s oceans increases by between five and 13 million tonnes. Over time, plastic breaks down into micro and nanoparticles that are invisible to the naked eye. Researchers at Lund University have investigated how these small plastic particles affect organisms in aquatic ecosystems. 

They found that some species of grazing zooplankton, daphnia, which are an important source of food for fish, were particularly vulnerable. Phytoplankton diatoms were also severely impacted. However, other types of algae, such as blue-green algae (cyanobacteria), which contribute to algal blooms, were completely unaffected.

“We don’t yet know why some collapse while others continue to thrive as usual. If the concentrations of nanoplastics increase, even those that can handle a few particles at present will also likely suffer,” says Lars-Anders Hansson, professor of aquatic ecology.

Article in full (Lund University’s website)